387 research outputs found

    Effects of ocean acidification on invertebrate settlement at volcanic CO<inf>2</inf> vents

    Get PDF
    We present the first study of the effects of ocean acidification on settlement of benthic invertebrates and microfauna. Artificial collectors were placed for 1 month along pH gradients at CO2 vents off Ischia (Tyrrhenian Sea, Italy). Seventy-nine taxa were identified from six main taxonomic groups (foraminiferans, nematodes, polychaetes, molluscs, crustaceans and chaetognaths). Calcareous foraminiferans, serpulid polychaetes, gastropods and bivalves showed highly significant reductions in recruitment to the collectors as pCO2 rose from normal (336-341 ppm, pH 8.09-8.15) to high levels (886-5,148 ppm) causing acidified conditions near the vents (pH 7.08-7.79). Only the syllid polychaete Syllis prolifera had higher abundances at the most acidified station, although a wide range of polychaetes and small crustaceans was able to settle and survive under these conditions. A few taxa (Amphiglena mediterranea, Leptochelia dubia, Caprella acanthifera) were particularly abundant at stations acidified by intermediate amounts of CO2 (pH 7. 41-7.99). These results show that increased levels of CO2 can profoundly affect the settlement of a wide range of benthic organisms. © 2010 Springer-Verlag

    A highly polymorphic insertion in the Y-chromosome amelogenin gene can be used for evolutionary biology, population genetics and sexing in Cetacea and Artiodactyla

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The early radiation of the <it>Cetartiodactyla </it>is complex, and unambiguous molecular characters are needed to clarify the positions of hippotamuses, camels and pigs relative to the remaining taxa (<it>Cetacea </it>and <it>Ruminantia</it>). There is also a need for informative genealogic markers for Y-chromosome population genetics as well as a sexing method applicable to all species from this group. We therefore studied the sequence variation of a partial sequence of the evolutionary conserved amelogenin gene to assess its potential use in each of these fields.</p> <p>Results and discussion</p> <p>We report a large interstitial insertion in the Y amelogenin locus in most of the <it>Cetartiodactyla </it>lineages (cetaceans and ruminants). This sex-linked size polymorphism is the result of a 460–465 bp inserted element in intron 4 of the amelogenin gene of Ruminants and Cetaceans. Therefore, this polymorphism can easily be used in a sexing assay for these species.</p> <p>When taking into account this shared character in addition to nucleotide sequence, gene genealogy follows sex-chromosome divergence in <it>Cetartiodactyla </it>whereas it is more congruent with zoological history when ignoring these characters. This could be related to a loss of homology between chromosomal copies given the old age of the insertion.</p> <p>The 1 kbp <it>Amel-Y </it>amplified fragment is also characterized by high nucleotide diversity (64 polymorphic sites spanning over 1 kbp in seven haplotypes) which is greater than for other Y-chromosome sequence markers studied so far but less than the mitochondrial control region.</p> <p>Conclusion</p> <p>The gender-dependent polymorphism we have identified is relevant not only for phylogenic inference within the <it>Cetartiodactyla </it>but also for Y-chromosome based population genetics and gender determination in cetaceans and ruminants. One single protocol can therefore be used for studies in population and evolutionary genetics, reproductive biotechnologies, and forensic science.</p

    Immunological assays for chemokine detection in in-vitro culture of CNS cells

    Get PDF
    Herein we review the various methods currently in use for determining the expression of chemokines by CNS cells in vitro. Chemokine detection assays are used in conjuction with one another to provide a comprehensive, biologically relevant assessment of the chemokines which is necessary for correct data interpretation of a specific observed biological effect. The methods described include bioassays for soluble chemokine receptors, RNA extraction, RT-PCR, Real - time quantitative PCR, gene array analysis, northern blot analysis, Ribonuclease Protection assay, Flow cytometry, ELISPOT, western blot analysis, and ELISA. No single method of analysis meets the criteria for a comprehensive, biologically relevant assessment of the chemokines, therefore more than one assay might be necessary for correct data interpretation, a choice that is based on development of a scientific rationale for the method with emphasis on the reliability and relevance of the method

    Adjuvant and neoadjuvant therapy for gastric cancer using epirubicin/cisplatin/5-fluorouracil (ECF) and alternative regimens before and after chemoradiation

    Get PDF
    Chemoradiation is now used more commonly for gastric cancer following publication of the US Intergroup trial results that demonstrate an advantage to adjuvant postoperative chemoradiotherapy. However, there remain concerns regarding the toxicity of this treatment, the optimal chemotherapy regimen and the optimal method of radiotherapy delivery. In this prospective study, we evaluated the toxicity and feasibility of an alternative chemoradiation regimen to that used in the Intergroup trial. A total of 26 patients with adenocarcinoma of the stomach were treated with 3D-conformal radiation therapy to a dose of 45 Gy in 25 fractions with concurrent continuous infusional 5-fluorouracil (5-FU). The majority of patients received epirubicin, cisplatin and 5-FU (ECF) as the systemic component given before and after concurrent chemoradiation. The overall rates of observed grade 3 and 4 toxicities were 38 and 15%, respectively. GIT grade 3 toxicity was observed in 19% of patients, while haematologic grade 3 and 4 toxicities were observed in 23%. Our results suggest that this adjuvant regimen can be delivered safely and with acceptable toxicity. This regimen forms the basis of several new studies being developed for postoperative adjuvant therapy of gastric cancer

    TWEAK and Fn14 expression in the pathogenesis of joint inflammation and bone erosion in rheumatoid arthritis

    Get PDF
    Extent: 10p.INTRODUCTION: TNF-like weak inducer of apoptosis (TWEAK) has been proposed as a mediator of inflammation and bone erosion in rheumatoid arthritis (RA). This study aimed to investigate TWEAK and TWEAK receptor (Fn14) expression in synovial tissue from patients with active and inactive rheumatoid arthritis (RA), osteoarthritis (OA) and normal controls and assess soluble (s)TWEAK levels in the synovial fluids from patients with active RA and OA. Effects of sTWEAK on osteoclasts and osteoblasts were investigated in vitro. METHODS: TWEAK and Fn14 expression were detected in synovial tissues by immunohistochemistry (IHC). Selected tissues were dual labelled with antibodies specific for TWEAK and lineage-selective cell surface markers CD68, Tryptase G, CD22 and CD38. TWEAK mRNA expression was examined in human peripheral blood mononuclear cells (PBMC) sorted on the basis of their expression of CD22. sTWEAK was detected in synovial fluid from OA and RA patients by ELISA. The effect of sTWEAK on PBMC and RAW 264.7 osteoclastogenesis was examined. The effect of sTWEAK on cell surface receptor activator of NF Kappa B Ligand (RANKL) expression by human osteoblasts was determined by flow cytometry. RESULTS: TWEAK and Fn14 expression were significantly higher in synovial tissue from all patient groups compared to the synovial tissue from control subjects (P < 0.05). TWEAK was significantly higher in active compared with inactive RA tissues (P < 0.05). TWEAK expression co-localised with a subset of CD38+ plasma cells and with CD22+ B-lymphocytes in RA tissues. Abundant TWEAK mRNA expression was detected in normal human CD22+ B cells. Higher levels of sTWEAK were observed in synovial fluids isolated from active RA compared with OA patients. sTWEAK did not stimulate osteoclast formation directly from PBMC, however, sTWEAK induced the surface expression of RANKL by human immature, STRO-1+ osteoblasts. CONCLUSIONS: The expression of TWEAK by CD22+ B cells and CD38+ plasma cells in RA synovium represents a novel potential pathogenic pathway. High levels of sTWEAK in active RA synovial fluid and of TWEAK and Fn14 in active RA tissue, together with the effect of TWEAK to induce osteoblastic RANKL expression, is consistent with TWEAK/Fn14 signalling being important in the pathogenesis of inflammation and bone erosion in RA.Anak A. S. S. K. Dharmapatni, Malcolm D. Smith, Tania N. Crotti, Christopher A. Holding, Cristina Vincent, Helen M. Weedon, Andrew C. W. Zannettino, Timothy S. Zheng, David M. Findlay, Gerald J. Atkins and David R. Hayne

    A competitive integration model of exogenous and endogenous eye movements

    Get PDF
    We present a model of the eye movement system in which the programming of an eye movement is the result of the competitive integration of information in the superior colliculi (SC). This brain area receives input from occipital cortex, the frontal eye fields, and the dorsolateral prefrontal cortex, on the basis of which it computes the location of the next saccadic target. Two critical assumptions in the model are that cortical inputs are not only excitatory, but can also inhibit saccades to specific locations, and that the SC continue to influence the trajectory of a saccade while it is being executed. With these assumptions, we account for many neurophysiological and behavioral findings from eye movement research. Interactions within the saccade map are shown to account for effects of distractors on saccadic reaction time (SRT) and saccade trajectory, including the global effect and oculomotor capture. In addition, the model accounts for express saccades, the gap effect, saccadic reaction times for antisaccades, and recorded responses from neurons in the SC and frontal eye fields in these tasks. © The Author(s) 2010

    Evolutionary Rate Covariation Identifies New Members of a Protein Network Required for Drosophila melanogaster Female Post-Mating Responses

    Get PDF
    Seminal fluid proteins transferred from males to females during copulation are required for full fertility and can exert dramatic effects on female physiology and behavior. In Drosophila melanogaster, the seminal protein sex peptide (SP) affects mated females by increasing egg production and decreasing receptivity to courtship. These behavioral changes persist for several days because SP binds to sperm that are stored in the female. SP is then gradually released, allowing it to interact with its female-expressed receptor. The binding of SP to sperm requires five additional seminal proteins, which act together in a network. Hundreds of uncharacterized male and female proteins have been identified in this species, but individually screening each protein for network function would present a logistical challenge. To prioritize the screening of these proteins for involvement in the SP network, we used a comparative genomic method to identify candidate proteins whose evolutionary rates across the Drosophila phylogeny co-vary with those of the SP network proteins. Subsequent functional testing of 18 co-varying candidates by RNA interference identified three male seminal proteins and three female reproductive tract proteins that are each required for the long-term persistence of SP responses in females. Molecular genetic analysis showed the three new male proteins are required for the transfer of other network proteins to females and for SP to become bound to sperm that are stored in mated females. The three female proteins, in contrast, act downstream of SP binding and sperm storage. These findings expand the number of seminal proteins required for SP's actions in the female and show that multiple female proteins are necessary for the SP response. Furthermore, our functional analyses demonstrate that evolutionary rate covariation is a valuable predictive tool for identifying candidate members of interacting protein networks. © 2014 Findlay et al

    Does oculomotor inhibition of return influence fixation probability during scene search?

    Get PDF
    Oculomotor inhibition of return (IOR) is believed to facilitate scene scanning by decreasing the probability that gaze will return to a previously fixated location. This “foraging” hypothesis was tested during scene search and in response to sudden-onset probes at the immediately previous (one-back) fixation location. The latencies of saccades landing within 1º of the previous fixation location were elevated, consistent with oculomotor IOR. However, there was no decrease in the likelihood that the previous location would be fixated relative to distance-matched controls or an a priori baseline. Saccades exhibit an overall forward bias, but this is due to a general bias to move in the same direction and for the same distance as the last saccade (saccadic momentum) rather than to a spatially specific tendency to avoid previously fixated locations. We find no evidence that oculomotor IOR has a significant impact on return probability during scene search
    corecore